
Exponent®

External Review of the Irrigated Lands Monitoring Program for the East San Joaquin River Watershed

Susan C. Paulsen, Ph.D., P.E. Melanie Edwards, PStat January 2020

Context

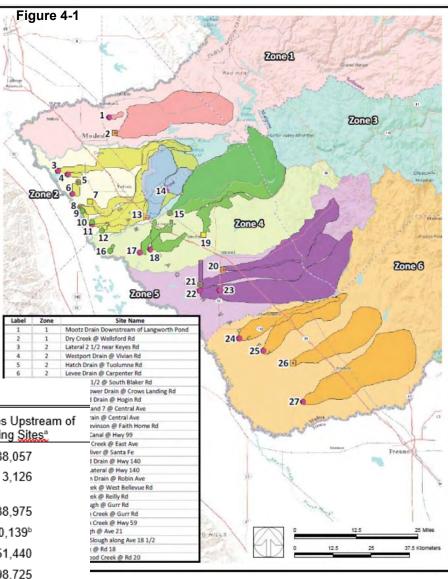
ESJWQC retained Exponent to

- Address questions posed in SWRCB Draft Order
- Identify practical limitations and constraints
- Evaluate spatial coverage
- Evaluate Pesticide Evaluation Protocol (PEP)
- Analyze water quality trends over time
- Assess effectiveness of outreach

Focus of Exponent's Review (from SWRCB Draft Order)

- Is the monitoring program of sufficient spatial and temporal density to identify water quality exceedances and problem areas?
- Are Core and Represented sites comparable to regional or watershed-based sampling?
- Is an exceedance at a Core site indicative of an exceedance at a Represented site?
- Are Core and Represented sites representative of one another, even if they exhibit differences in exceedance rates for different constituents?
- Can surface water monitoring be used to evaluate management practice effectiveness?
- Does the monitoring program include sufficient feedback mechanisms to indicate if program is achieving its stated purpose?

Conclusions from Exponent's Review of the Water Quality Monitoring Program


- Core and Represented sites within the six zones provide sufficient spatial coverage
- Data identify water quality changes over time
- Data confirm that management practices and targeted outreach have improved water quality
- Naturally occurring constituents and those with multiple sources show higher variability
- Non-irrigated agricultural sources are likely important causes of water quality exceedances
- Monitoring program uses structured framework to:
 - Incorporate data on chemical use, relative risk, exposure, and chemical behavior
 - Tailor monitoring and implementation measures
 - Maximize likelihood that water quality problems will be identified

Sampling is constrained by practical limitations

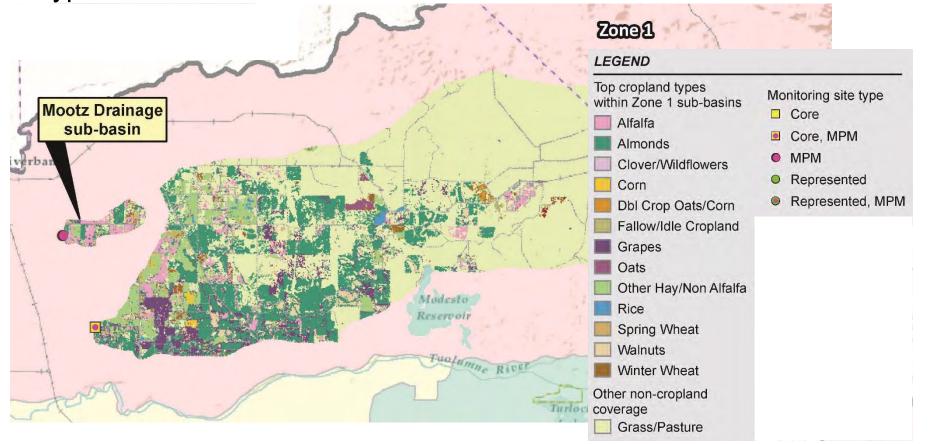
- Travel time between sites is long
- Equipment and personnel positioning is challenging during storms
- Access and passage over privately owned land may be limited
- Health and safety considerations are important
 - Safe transportation conditions
 - Weather conditions
 - Exposure to elements
 - Potentially dangerous wildlife
 - Communication from remote areas
 - Access from busy roadways
- Field equipment is expensive, requires maintenance, may break
- Sampling and analytical requirements impose limitations (e.g., holding times, laboratory open hours and labor schedules)

Spatial Coverage Is Sufficient

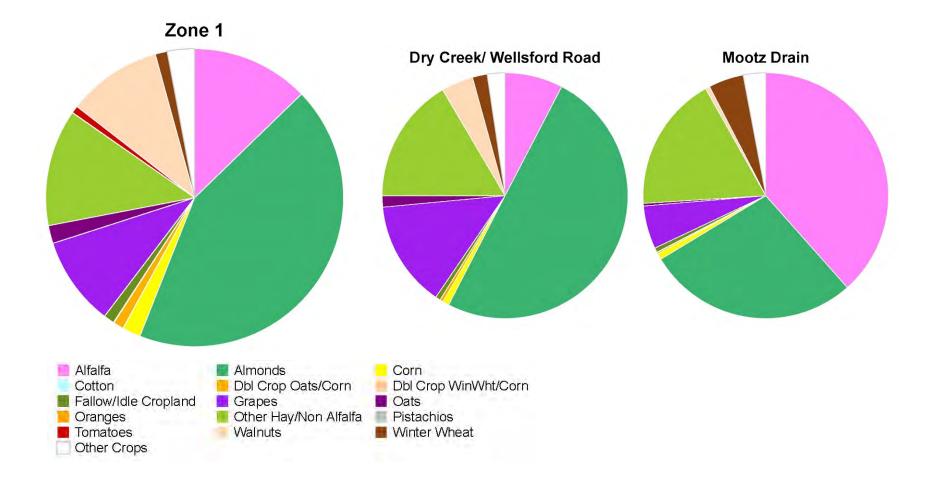
- Each zones includes
 - One Core station
 - Multiple Represented stations
- Downstream sampling locations represent upstream area
- Zone 1 large % irrigated lands
- Zone 6 largest acreage

Table 3-1. Irrigated acreage by monitoring zone¹⁹

			Drain @ Hogi
Zone	Irrigated Acreage in Zone	Irrigated Acres Upstream of Core Monitoring <u>Sites</u> *	and 7 @ Centra rain @ Central evinson @ Fait Canal @ Hwy 9
1 Dry Creek @ Wellsford Rd	120,292	88,057	Creek @ East / liver @ Santa F I Drain @ Hwy
2 Prairie Flower Drain @ Crows Landing Road	143,060	3,126	ateral @ Hwy : n Drain @ Robi eek @ West Bel eek @ Reilly Rd
3 Highline Canal @ Hwy 99	90,283	38,975	igh @ Gurr Rd Creek @ Gurr
4 Merced River @ Santa Fe	118,682	130,139 ^b	t Creek @ Hwy th @ Ave 21 Slough along A
5 Duck Slough @ Gurr Rd	160,604	51,440	@ Rd 18 bod Creek @ Rd
6 Cottonwood Creek @ Rd 20	349,321	98,725	
Sum	982,242	410,462	_

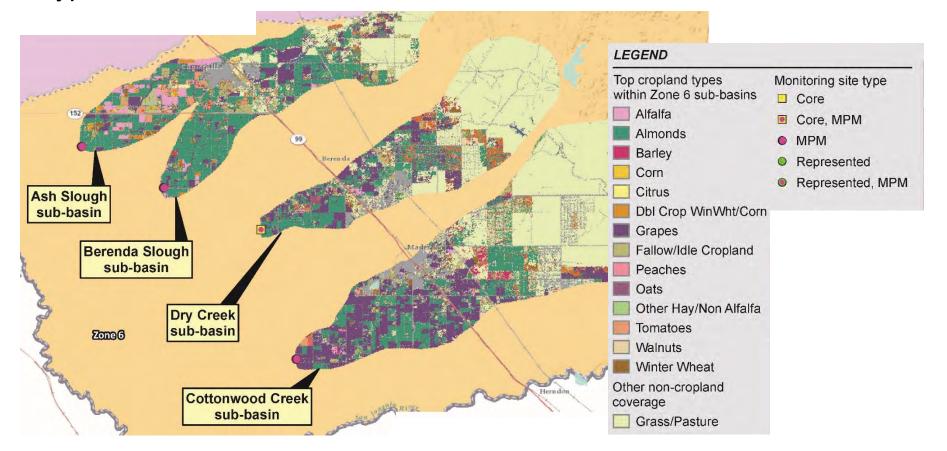

Sampling and constituents monitored are comprehensive (2004-2017)

- From 2004-2017, water was collected at 51 locations within the six zones, resulting in 1,870 water monitoring samples (excluding field replicates)
- Water samples were analyzed for up to 80 constituents, including metals, pesticides, and pyrethroids; up to three water toxicity tests; and nutrients, *E. coli*, and physical measurements

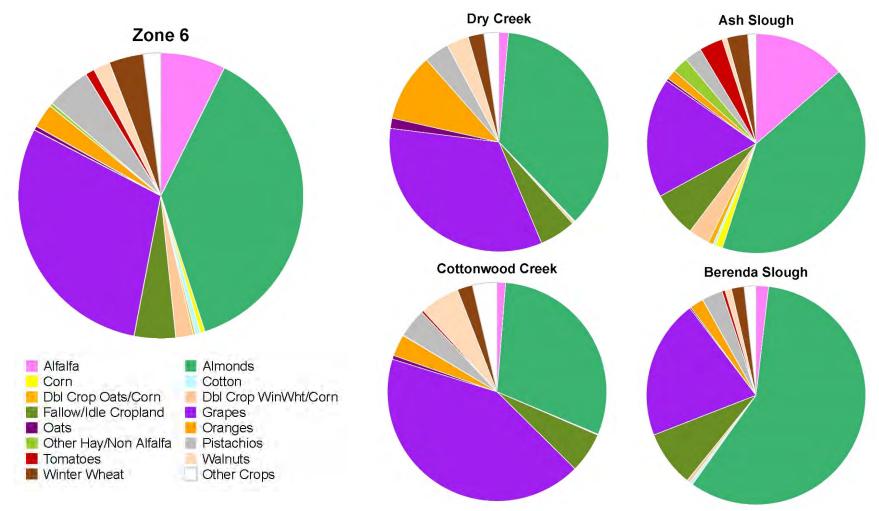

		Number of	Number of	
Monitoring from		sites	water samples	
2004–2017	Zone	sampled	analyzed	
2004–2017	Zone 1	6	194	
	Zone 2	14	497	
	Zone 3	4	224	
	Zone 4	11	389	
	Zone 5	7	373	
	Zone 6	9	193	

Example crop distribution map – Zone 1

 Core and Represented sites are representative of major crop types within a zone



Areas draining to sampling locations are comparable to entire zone

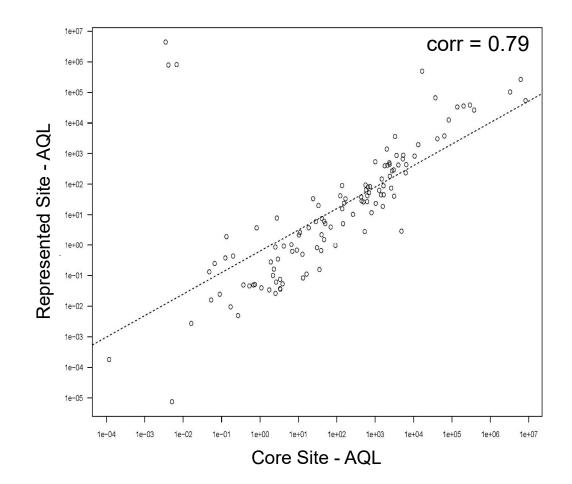


Example crop distribution map – Zone 6

 Core and Represented sites are representative of major crop types within a zone

Core and Represented sites are representative of major crop types – Zone 6

Overview of Pesticide Evaluation Protocol (PEP)

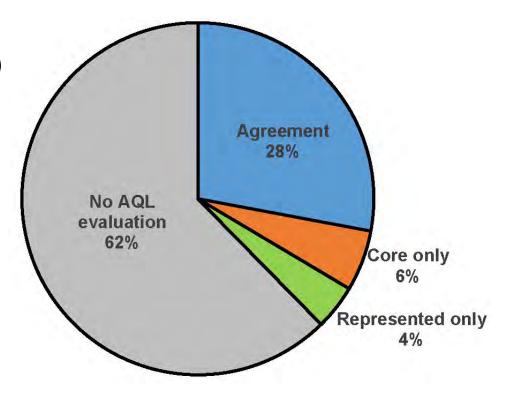

- Pesticide Evaluation Process (PEP) structured method to identify constituents to monitor
 - Incorporates usage, toxicity, degradation and impurities for total usage
 - Calculate relative risk for aquatic life (AQL) and human health
 - Exclude from monitoring only constituents that:
 - Sufficient data to assure no AQL risk
 - Unlikely to be found in water
 - No analytical methods to measure levels
 - Site-specific reasons that justify not monitoring
- Process is implemented annually, based on last 3 years of data
- PEP submitted for review/approval by RWQCB

PEP applied to Represented or Core sites results in similar monitoring priorities

- Exponent applied PEP to Represented sites
 - Assessed representativeness throughout the zone
 - Compared with PEP derived from the Core site
- Aquatic Life (AQL) ratio characterizes pesticide usage and risk
 - Monthly 3-year average chemical usage / risk reference value for effect
 - Higher ratio = greater volume used or lower reference value for effects

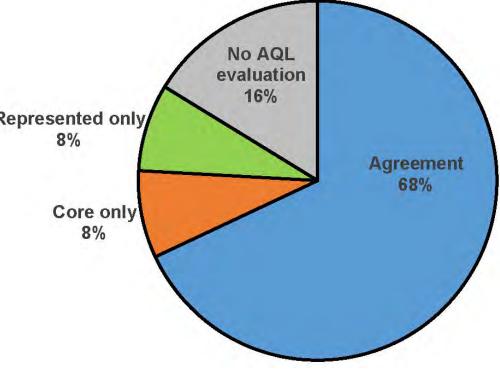
AQL for Core and Represented site in Zone 1

- AQL for average monthly pesticide use for 31 chemicals
- High correlation (0.79) indicates Core site is representative of Represented site
 - Similar chemical usage
 - Similar risk level
- Core site representative for all other zones
 - Correlations 0.79-0.99


Monitoring recommendations consistent between Core and Represented sites

- Compare PEP monitoring recommendations based on Represented site with Core site recommendations
 - Evaluated every Chemical per Month
 - Agreement: Both sites or neither site recommended monitoring
 - Disagreement: Monitoring recommended for Core or Represented site only
- Recommendations derived for Core or Represented sites reflect pesticide use, agricultural practices, and water quality of the entire zone
 - Valid for all 6 zones
 - Every Represented site similar to results for the Core site in the same zone

Similarity of monitoring recommendations between Core and Represented sites


Zone 1 – 535XMDDLP

- 340 total chemical-months
 - 51 unique chemicals
- 212 do not require AQL (62%)
- 128 evaluated
 - 95 Agreement
 - 19 Core site only
 - 14 Represented site only

Similarity of monitoring recommendations between Core and Represented sites

Zone 6 – 545XBSAAE 369 total chemical-months 56 unique chemicals 60 do not require AQL 309 evaluated 251 Agreement 29 Core site only 29 Represented site only

Naturally occurring, non-agricultural constituents are more variable than controlled constituents

- More progress for chlorpyrifos and C. dubia survival
 - Chlorpyrifos registration for non-agricultural use was cancelled in 2006, and sampling sites were selected to minimize urban contribution
 - Exceedance rates have declined over time
 - Targeted outreach has been effective
 - C. dubia survival has improved markedly
- Effects less evident for constituents naturally occurring or from non-agricultural sources
 - Dissolved copper shows much greater variability
 - Variability evident both over time and within individual zones

Targeted outreach is generally effective

Table 4-7. Chlorpyrifos exceedance percentages by outreach type category

Outreach Period	Time Period	Zone 1 ^a	Zone 2 ^b	Zone 3	Zone 4 ^c	Zone 5	Zone 6
Before Focused							
Outreach	2004-2008	19.4	8.3	13.8	11.6	8.9	12.6
Focused Outreach							
Initiated	2009-2013	7.9	6.7	2.3	1.3	7.3	1.7
Current Monitoring	WY 2014-						
Program	2017	1.9	10.9	2.8	1.2	3.2	0

Table 4-8. C. dubia survival exceedance percentages by outreach type category

Outreach Period	Time Period	Zone 1 ^a	Zone 2 ^b	Zone 3	Zone 4 ^c	Zone 5	Zone 6
Before Focused Outreach Focused Outreach	2004–2008	5.6	2.9	12.9	11.0	5.5	2.1
Initiated Current Monitoring	2009–2013 WY 2014–	0	5.9	0	0	6.8	0
Program	2017	0	9.5	0	0	6.8	0

Note that Zone 2 includes agricultural operations (dairy) not subject to Coalition outreach

Coalition's monitoring program includes sufficient feedback mechanisms

- Pesticide Evaluation Protocol (PEP) is used to customize monitoring in each zone based on:
 - Chemical use by month within a zone
 - Potential for risk to aquatic life and human health
 - Prior surface water monitoring data
 - Factors related to a chemical's behavior in the environment
- Regional Board approves the final monitoring plan for each zone

Conclusions from Exponent's Review of the Water Quality Monitoring Program

- Core and Represented sites within the six zones provide sufficient spatial coverage
- Data identify water quality changes over time
- Data confirm that management practices and targeted outreach have improved water quality
- Naturally occurring constituents and those with multiple sources show higher variability
- Sources not in Coalition program are likely important causes of water quality exceedances
- Monitoring program uses structured framework to:
 - Incorporate data on chemical use, relative risk, exposure, and chemical behavior
 - Tailor monitoring and implementation measures
 - Maximize likelihood that water quality problems will be identified

Details are contained in full report

Exponent

Review of the Irrigated Lands Monitoring Program for the East San Joaquin River Watershed

Prepared for

Ms. Theresa Dunham Somach Simmons & Dunn 500 Capitol Mall, Suite 1000 Sacramento, California 95814

Prepared by

Exponent 1055 E. Colorado Blvd., Suite 500 Pasadena, California 91106

December 21, 2017